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Monte Carlo investigation of the three-dimensional
random-field three-state Potts model
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Institut für Physik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany

Received 22 April 1996

Abstract. The three-state Potts model with nearest ferromagnetic interactionJ on the simple
cubic lattice, exposed to a fieldHRF = J which randomly favours one of the states, is
studied by finite size scaling analysis of Monte Carlo simulations. The consequences of the
hyperscaling violations for the finite size scaling description are worked out, and it is shown
that at criticality the order parameter distribution develops a trivial character (superposition of
three delta functions), unlike the nontrivial distributions in models where hyperscaling holds.
The numerical data are compatible with this interpretation, and are also compatible with a
description in terms of only two independent static critical exponents, as proposed by Schwartz
et al. Slow relaxation and the need of averaging over a large number of random field samples
restricts the range of linear dimensionsL to L 6 28, and in view of crossover problems only
rough estimates of critical exponents are obtained.

1. Introduction

The effect of quenched random fields on phase transitions has been a long-standing challenge
in statistical mechanics (Imry and Ma 1975, Nattermann and Villain 1988, Nattermann and
Rujan 1989, Belanger and Young 1991, Rieger 1995). The generic model is the nearest
neighbour random field Ising model (RFIM), for which—after a long controversy!—it was
proven that ind = 3 dimensions at low temperatures a spontaneous magnetization exists
(Imbrie 1984, Bricmont and Kupiainen 1987). However, the nature of the transition from
the ferromagnetic to the disordered phase is still incompletely understood:assumingthat
this is a second-order transition there are important questions about the nature of the critical
behaviour (Schwartzet al 1991, Gofmanet al 1993, Rieger and Young 1993, Rieger 1995).
But a weak first-order transition (Young and Nauenberg 1985) is not really ruled out (Rieger
1995). Recently there has been new evidence for the old idea (Morgensternet al 1981) that
on cooling the system from the disordered paramagnetic phase one first enters a glass-like
phase (de Almeida and Bruinsma 1987, Mézard and Young 1992, Ḿezard and Monasson
1994, de Dominiciset al 1995, Stepanowet al 1996).

The situation is even more unclear when one considers theq-state Potts model (Potts
1952, Wu 1982) exposed to random fields (Blankschteinet al 1984, Goldschmidt and Xu
1985, 1986, Eichhorn and Binder 1995, 1996). This model is of interest because of a
possible application to anisotropic orientational glasses (Binder and Reger 1992, Vollmayr
et al 1992), e.g. in a coarse-grained description of systems such as(N2)xAr1−x (Hoechli et
al 1990) theq discrete states of the Potts model may represent theq energetically preferred
orientations of the quadrupole moment of theN2 molecule in the crystal field potential,
and the random field represents the influence of the disorder in the environment caused
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by random dilution (with Ar in this example). But the main interest, of course, comes
from the fact that for a Potts ferromagnet theorder of its transition to the disordered phase
depends on the number of its statesq (Wu 1982). If we considerq, d as continuous rather
than discrete variables, we may draw a lineqc(d) in the q–d plane, where the transition
changes from first-order to second-order, figure 1. In the presence of random fields, this
line of tricritical points (Sarbach and Lawrie 1984) gets shifted, since both the lower critical
dimensionalityd` (Fisher 1974) and the upper critical dimensionalitydu get shifted due
to the random fields Aharonyet al 1976). Remember thatd` is the dimensionality where
thermal fluctuations destroy long range order (Young 1980), while ford > du meanfield
theory becomes qualitatively correct, anddu = 4 for the pure system whiledu = 6 in
the presence of random fields (Aharonyet al 1976, Blankschteinet al 1984). Based on a
perturbational renormalization group treatment, Aharonyet al (1976) suggested the concept
of simple ‘dimensional reduction’, i.e. the random field system corresponds to a pure system
in a dimensionality shifted by 2,dRF = dFM + 2. This would imply the broken curve in
figure 1, which cannot be correct since it impliesd` = 3 (noteqc(d → d`) → ∞), while it
is known both from droplet model type arguments (Villain 1982, Grinstein and Ma 1982)
and rigorous analysis (Imbrie 1984) thatd` = 2 in the presence of random fields. But
conceivably a modified dimensional reduction holds (Schwartz 1985, 1991, Schwartz and
Soffer 1985, 1986), such that a system at dimensionalitydRF in the presence of random
fields has the same critical behaviour as a pure ferromagnet at dimensionalitydFM , with

dRF = dFM + 2 − η(dFM) (1)

where the exponentη characterizes the decay of critical correlations (Fisher 1974). Since
η(d = 1) = 1 for pure Ising models, equation (1) yieldsdRF = 2 for dFM = 1 as the lower
critical dimensionality. However, even assuming that there is a second-order transition from
the ferromagnetic phase to the disordered phase in the presence of the random field: Villain
(1985) and Fisher (1986) suggest that there are three independent static exponents; e.g. the
hyperscaling relation (Fisher 1974)γ (dFM) + 2β(dFM) = dFMν(dFM) gets modified as (β,
γ , ν are the critical exponents of order parameter, susceptibility and correlation length, see
e.g. Fisher (1974))

γ + 2β = ν(d − θ). (2)

Here θ is a new, independent exponent (while 2− η = γ /ν remains valid). According to
Blankschteinet al (1984), Schwartz (1985) and Schwartzet al (1991), on the other hand,
standard hyperscaling does not hold either, but the exponentθ in equation (2) is not an
independent exponent:

θ = 2 − η. (3)

Blankschteinet al (1984) have proposed that a modified dimensional reduction applies to the
q-state Potts model, implying that the separatrix between first- and second-order transitions
(that starts atq = 2, d = 4 for the pure system and tends toq → ∞ for d → 1) gets
transformed into a curve that starts atq = 2, d = 6 for the random field system and tends
to q → ∞ for d → 2. The physically most relevant caseq = 3, d = 3, which is a
weak first-order transition in the pure case (Herrmann 1979, Stepanow and Tsypin 1991,
Kikuchi and Okabe 1992, Vollmayret al 1993), falls in the second-order regime according
to figure 1 if random fields are present.

If one accepts that figure 1 is valid, the next questions arise as follows: will arbitrary
weak random fields suffice to turn the transition from first- to second-order (this is believed
to occur ind = 2 for q > 4 (Aizenman and Weber 1989)), or do we need a finite strength
of the random fieldHRF (figure 2(b), Eichhorn and Binder 1995), while an alternative, third
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Figure 1. Schematic plot of the separatrixqc(d) in the q–d plane. Potts models below this
curve have second-order transitions, above the curve they have first-order transition. The full
curve refers to the pure case, while the dash–dotted curve refers to the random field Potts model
(RFPM). The broken curve shows the result that one would obtain when the concept of simple
dimensional reduction would apply (i.e. the ‘effective dimensionality’dRF of the random field
model corresponds to a pure ferromagnet raised by two,dFM +2). Remember thatq = 2 simply
corresponds to the Ising model. The question mark in figure 1 emphasizes the physically most
relevant cased = 3, q = 3. After Blankschteinet al (1984).

scenario is given in figure 2(a) (Eichhorn and Binder 1996). The latter scenario should be
applied if the claims of Goldschmidt and Xu (1985, 1986) are correct, who suggested that
the phase transition of the three-state Potts model stays first-order throughout the whole
(HRF ,T ) plane. Figure 2(b) is compatible with the dimensionality shift scenario while
figure 2(a) clearly is not. However, while figure 2 is compatible with a simple mean field
treatment of the RFIM (Aharony 1978), both versions disregard the possibility of first-order
transitions in weak random fields (Young and Nauenberg 1985) and glassy phases (Mézard
and Monasson 1994, de Dominiciset al 1995).

In the present paper we try to contribute to the understanding of this problem by a
Monte Carlo study of the three-state Potts model in weak random fields. Previous work
(Eichhorn and Binder 1996) applying fields of intermediate strength gave evidence for rather
dramatic slowing down near the transition, and its character could not be clarified (if it is
first-order, it is rather weakly first-order only). Here we use finite size scaling methods
(Fisher 1971, Binder 1981, Barber 1983, Privman 1991, Binder 1992), but pay particular
attention to the hyperscaling violation (equation (2)) and its consequences: as is well known,
finite size scaling in its usual form implies the validity of hyperscaling (Binder 1981, Brézin
1982, Zinn-Justin and Brézin 1985). However, using both equations (2) and (3) finite size
scaling is recovered, if the probability distribution of the order parameter has a particular
(rather pathological!) form (i.e., a sum of delta functions in the scaling limit). It is shown
that the actual Monte Carlo data are reasonably compatible with such an analysis (a brief
and preliminary account of these results was given in Eichhorn and Binder 1995). The
implication of our analysis is that the Potts ferromagnet in random fields (which are neither
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Figure 2. Schematic phase diagram scenarios for theq-state Potts model ind = 3 dimensions,
using the temperatureT , the amplitude of the random fieldHRF and the number of Potts-statesq

as variables. Second-order transitions are shown as dotted lines, while first-order transitions are
shown as full lines, tricritical points being shown as broken lines. In the Ising model (q = 2),
the transition is second-order for smallHRF and first-order for largeHRF . In case (a) it is
assumed that the line of tricritical points ends forq = q

pure
c , implying that only first-order

transitions occur forq > q
pure
c (consistent with Goldschmidt and Xu 1985, 1986). Conversely,

in case (b) it is assumed that forq = q
pure
c a line of other tricritical points start atHRF = 0,

q = q
pure
c such that forqpure

c < q < qRF
c two tricritical points occur along the phase transition

line Hc = HRF (Tc) from the ordered to the disordered state. Note thatqRF
c can be considered

as the value ofq where these two tricritical points merge and annihilate each other.

too weak nor too strong!) has a second-order transition and the exponents are presumably
compatible with the modified dimensionality reduction proposed by Schwartz (1985) and
Schwartzet al (1991), although due to crossover problems we are unable to give precise
estimates of the associated exponents.

In section 2 we briefly discuss our Monte Carlo methods (see also Eichhorn 1995,
Eichhorn and Binder 1996), while section 3 explores the consequences of hyperscaling
violation on finite size scaling. Section 4 then summarizes our numerical results, while
section 5 briefly summarizes our conclusions.
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2. Some comments on the simulation technique

Due to the need of sample averaging and very slow relaxation the simulation of systems with
quenched disorder is still a challenge (Younget al 1995, Rieger 1995). Applying multispin
coding techniques (see e.g. Bhanotet al 1986) a reasonably fast program was developed
(Eichhorn 1995), operating at a speed of about 2× 107 Monte Carlo steps (MCS) per
second on a CRAY-YMP processor, and 1.3 × 106 MCS sec−1 on an INTEL PARAGON
I860 processor. These numbers refer to a conventional single spin flip Metropolis type
algorithm (Binder and Heermann 1992). Since the ‘quenched averaging’ (Binder and Young
1986) over the random field configurations can be done trivially in parallel, we have found
it efficient to run our program on an INTEL PARAGON multiprocessor machine simply
using each available processor for a replica of the system with a different random field
configuration. For small systems (fromL = 4 to L = 12) we typically carried out an
averaging over 496 realizations of the random field, while for the largest size presented
here (L = 28) up to 248 realization were used.

Typically we equilibrated our systems for times of order of 105 to 106 MCS per lattice
site. As is well known, for random systems it is a severe problem to judge whether a system
has reached full thermal equilibrium or is still in a slowly relaxing metastable state (Binder
and Young 1986, Bhatt and Young 1988). For our problem we have found it useful to
study the relaxation of magnetizationm and energyE as a function of time, using different
starting conditions (one replica (A) was started in a fully ordered state, the other replica (B)
was started from a completely random state). Figure 3 shows that in the critical region a
remarkably fast relaxation towards equilibrium is obtained forHRF = 1, while forHRF = 2
the relaxation is several orders of magnitude slower, which is evident from an investigation
of the relaxation time in the critical region (figure 4). As a consequence, we have confined
ourselves to a careful study of the caseHRF = 1 and no further work is done forHRF = 2
(note that we use only integer values ofHRF , in units of the exchange constant, since then
our program performs somewhat faster than for noninteger choices, see Eichhorn (1995)).

We tried to analyse the relaxation times in figure 4 in terms of appropriate concepts about
critical slowing down. While for ordinary critical phenomena in the absence of conservation
laws one would postulate a simple power law with a dynamic exponentz, see Hohenberg
and Halperin (1977)

τ = a1(T /Tc − 1)−z T → Tc from above (4)

in the case of RFIM also a stronger divergence of the relaxation time is under discussion,
namely ‘activated dynamics’ (Villain 1985, Fisher 1986)

ln τ = a2(T /Tc − 1)−z′
T → Tc from above. (5)

Of course, in a finiteL × L × L box either divergence would exhibit some finite size
rounding, and hence small lattice sizes systematically yield smaller estimates forτ , as is
obvious from the figure. Curves in figure 4 represent fits to the largest size only. Obviously,
there is still much scatter in the data, and hence we cannot attempt to distinguish between
the two conflicting possibilities, equations (4) and (5). Moreover, it is obvious thatτ is
already extremely large forHRF = 2 even for rather small values ofL. That is why we
decided to analyse here only the caseHRF = 1 in some detail. Obviously, a study of the
critical dynamics of the RFIM and RFPM would be extremely interesting, but this would
require many more orders of magnitude of CPU time than were available here (we have
used the equivalent of several thousands hours of CPU time on a CRAY-YMP processor
already).
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Figure 3. Relaxation of the magnetization (a) and energy (b) versus timet (in units MCS),
for L = 28, T = 1.695, HRF = 1, averaging over 62 realizations of the random field. Note
kB = 1, and the nearest neighbour exchangeJ = 1. BothkBT andHRF are measured in units
of J .

We have typically carried out runs for a small number of temperatures only (between
3 and 9 values) and record the quantities of interest every 104(L 6 6) or 2× 104(L > 8)

MCS per spin, taking between 25 000 and 50 000 such ‘measurements’ for each of our
248 random field samples. In this way histograms for the low-order momentsmp(Ei) are
taken individually for each random field sample. HereEk is the energy recorded in the
kth observation, and noting that in our model only discrete energiesEi can occur,hi is the
energy distribution (‘histogram’, cf. Ferrenberg and Swendsen 1988, 1989),

hi =
∑

k

δ(Ek − Ei) m
p

i =
∑

k

m
p

k δ(Ek − Ei) p = 1, 2, 3, 4. (6)

If we denote the temperature where the simulation is carried out byTo, the thermal
expectation value at this temperature is

〈mp〉To
=

∑
i

him
p

i /
∑

i

hi (7)

and the expectation value at a neighbouring temperatureT in this ‘single histogram
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Figure 4. Relaxation timeτ (estimated as the time where the magnetizationm became
independent of the initial condition, as shown in figure 3(a)) plotted againstT −Tc, for HRF = 2
(a) and HRF = 1 (b), using the estimatesTc = 1.19 (a) and Tc = 1.69 (b). Dotted curves
are fits to a power law,τ = a1(T /Tc − 1)−z, and full curve to a thermally activated critical
slowing down, lnτ = a2(T /Tc −1)−z′

. Parameters of the fit area1 = 14.4, z = 3.49 ora2 = 4,
z′ = 0.43 in case (a), and a1 = 1.08, z = 1.68 or a2 = 2.48, z′ = 0.25 in case (b). Note
that the open symbols in case (a) have the meaning of lower bounds only, since the runs were
simply too short to reach thermal equilibrium for these parameter combinations. Different linear
dimensions are included, as indicated in the figure.

extrapolation’ (Ferrenberg and Swendsen 1988) becomes

〈mp〉T =
∑

i

hi exp

[(
1

To

− 1

T

)
Ei

]
m

p

i

/ ∑
i

hi exp

[(
1

To

− 1

T

)
Ei

]
. (8)

This reweighting technique is readily generalized to take into account the information of
multiple histograms taken at a set of several temperatures (Ferrenberg and Swendsen 1989).
For systems with quenched random disorder, of course, there is the difficulty that the thermal
averaging (such as in equiation (8)) has to be carried out for each sample of the random
disorder individually (D’Onorio De Meoet al 1995), and only afterwards can one take the
average [. . .]av over the quenched random disorder (Binder and Young 1986). Thus the
storage requirements for reweighting techniques applied to random systems are huge—even
restricting attention top 6 4 in equation (6) we have needed 1.25 MByte working storage
per random field realization. Figure 5 shows typical data obtained with such techniques
(symbols are only drawn at temperatures where runs have actually been carried out for
the respective lattice sizes). We shall return to the analysis of these data in Sec. 4. Here
the energyE is simply the thermal average of the RFPM Hamiltonian (rememberJ = 1,
HRF = 1)

H = −J
∑
〈i,j〉

δSi ,Sj
− HRF

∑
i

δSihi
Si = 1, 2, . . . , q (9)

where the quenched random variablehi is chosen uniformly and randomly from the set
{1, 2, . . . , q}. The specific heat per spin then is sampled from the fluctuation relation

Cv = ([〈H2〉T − 〈H〉2
T ]av)/(T

2Ld). (10)

For the order parameterm, it is convenient to use the simplex representation of the Potts
model (Vollmayr et al 1993). Forq = 3, this means we have a two-component order
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parameterm = (m1, m2), where the individual spins can be one of the following three unit
vectors

e1 =
(

1

0

)
e2 =

( −1/2

+√
3/2

)
e3 =

( −1/2

−√
3/2

)
. (11)

If we then denote the Potts spin vector at lattice sitei assi (si can be one of these three
discrete vectors in equation (11) only, of course), we can define a(q − 1) dimensional
magnetization vectorm as

m = (1/N)
∑

i

Si mSQR = [〈|m|〉T ]av. (12)

The ‘susceptibility’χ ′ shown in figure 5(d) is then defined in terms of a fluctuation relation

χ ′ = Ld [〈m2〉T − 〈|m|〉2
T ]av/T . (13)

Note that we use〈|m|〉T rather than〈m〉T in equation (13) because〈m〉T ≡ 0 in finite
systems in the absence of symmetry breaking fields (Binder and Heermann 1992). Therefore
χ will differ above Tc from the susceptibility∂[〈m1〉/∂H1]T , whereH1 is a uniform field
applied in the direction ofm1, by a constant factor. Butχ ′ as defined in equation (13)
has the advantage that also in the absence of random and/or uniform fields there is a well
defined peak in a finite system present (Binder and Heermann 1992).

Due to the presence of the random field there is also interest in a ‘disconnected
susceptibility’χdis (Schwartz 1985, Schwartz and Soffer 1985, 1986)

T χdis = Ld [〈m〉2
T ]av (14)

which differs in its critical behaviour fromχ ′ or χ which usually is defined as follows

T χ = Ld [〈m2〉T − 〈m〉2
T ]av. (15)

3. Finite size scaling for random field systems

In order to appreciate why equation (2) creates a problem for finite size scaling, we recall a
phenomenological connection between finite size scaling and hyperscaling (i.e. dν = 2β+γ ,
see Fisher (1974), as derived by Binder (1981)). There one considers the distribution
function PL(m) for the order parameter in a finite system of linear dimensionsL in the
critical region, where the correlation lengthξ of order parameter fluctuations is large. In the
absence of fields, approach to criticality by variation of the temperature distance 1− T/Tc

can then be described by variation ofξ ∝ |1 − T/Tc|−ν . Finite size scaling then simply is
the statement thatPL(m) does not depend on the three variablesL, ξ , m separately, but is
a generalized homogeneous function of suitable combinations of only two variables (Binder
1981),P̃ being a ‘scaling function’,

PL(m) = Lβ/νP̃ (L/ξ, mLβ/ν) ξ → ∞, L → ∞, L/ξ finite. (16)

From equation (16) we immediately conclude the standard finite size scaling relations
(Privman 1991)

〈|m|〉 =
∫

dm|m|PL(m) = L−β/ν f̃1(L/ξ) (17)

〈m2〉 =
∫

dmm2PL(m) = L−2β/ν f̃2(L/ξ) (18)

wheref̃1, f̃2 are other scaling functions. From equation (13) we then obtain

Tcχ
′ = Ld−2β/ν [f̃2(L/ξ) − (f̃1(L/ξ))2]. (19)
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Figure 5. EnergyE (a), root mean square magnetizationmSQR (b), specific heatCv (c) and
susceptibilityχ ′ (d) plotted against temperature forHRF = 1 and various lattice sizesL, with
4 6 L 6 28, as indicated. The points indicate actual measured values, the curves have been
constructed using histogram reweighting as described in the text.

Redefining a scaling functioñχ ′(L/ξ) as follows

χ̃ ′(L/ξ) = f̃2(L/ξ) − [f̃1(L/ξ)]2 (20)

we conclude from equations (19), (20) thatTcχ
′ = Ld−2β/νχ̃ ′(L/ξ). Since finite size scaling

of the susceptibility implies, on the other hand (Fisher 1971, Barber 1983)

Tcχ
′ = Lγ/νχ̃ ′(L/ξ) (21)

it follows as a consequence of finite size scaling (Binder 1981) that

d − 2β/ν = γ /ν (22)

which is nothing but the standard hyperscaling relation (Fisher 1974).
How can we apply then finite size scaling concepts to the RFIM and RFPM? Other cases

where hyperscaling is violated are systems above their upper critical dimensiondu, and then
a different form of finite size scaling holds where the correlation lengthξ in equations (16)–
(21) is replaced by the ‘thermodynamic length’ (Binderet al 1985, Binder 1985), and
the exponentβ/ν is replaced byd/4 (Zinn-Justin and Bŕezin 1985). Assuming here a
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second-order transition from the disordered phase to the ferromagnetic phase, hyperscaling
is violated (equation (2)), but the resolution of the puzzle is again different.

First of all, we emphasize that irrespective of any finite size scaling assumption one can
relate the finite size behaviour of the susceptibility and the disconnected susceptibilities at
Tc to the power law decay of the corresponding critical correlations

gconn(r) ≡ [〈So · Sr〉T − 〈So〉T · 〈Sr〉T ]av ∝ r−(d−2+η) T = Tc (23)

gdis(r) ≡ [〈So〉T · 〈Sr〉T ]av ∝ r−(d−4+η̄) T = Tc (24)

recalling the standard definitions of the exponentsη (Fisher 1974) and̄η (Schwartz 1985,
Schwartz and Soffer 1985, 1986). The finite size behaviour now follows straightforwardly

Tcχ ≡
∑

r

gconn(r) ∝
∫ L

0
rd−1drgconn(r) ∝ L2−η (25)

and

Tcχdis ≡
∑

r

gdis(r) ∝
∫ L

0
rd−1drgdis(r) ∝ L4−η̄. (26)

If one assumes scaling properties of these correlation functions

gconn(r) = r−(d−2+η)g̃conn(r/ξ) (27)

gdis(r) = r−(d−4+η̄)g̃dis(r/ξ). (28)

It follows that T χ ∝ ξ2−η, T χdis ∝ ξ4−η̄, and then equations (25) and (26) can also be
rewritten as

Tcχ ∝ Lγ/ν Tcχdis ∝ Lγ̄/ν (29)

Following the similar reasoning of Schwartz (1985) and Schwartz and Soffer (1985, 1986),
we make use of the obvious inequalities

Ld [〈m〉T ]2
av 6 Ld [〈m〉2

T ]av 6 Ld [〈m2〉T ]av. (30)

Since equation (14) says that the quantity in the middle of this inequality is the disconnected
susceptibility, it follows that atTc

L4−η̄ 6 Ld [〈m2〉Tc
]av = Ld−2β/ν (31)

where in the last step equation (18) was used (herePL(m, T ) = [PL(m, T , {hi})]av is the
distribution function obtained after taking the quenched average over the random fields).
Equation (31) is equivalent to the inequality 4− η̄ 6 d − 2β/ν. We now assume that for
‘reasonable’ distributionsPL(m̄, T ), with respect to the powers ofL at Tc in equation (31)
we should have an equality,

4 − η̄ = d − 2β/ν or γ̄ /ν + 2β/ν = d (32)

where in the last step equation (29) was invoked. Thus we conclude thatif one assumes
that ‘L scales withξ ’ (as written in equations (16)–(19)) it follows under fairly general
assumptions that there is a kind of hyperscaling relation, but withγ̄ replacingγ in the
usual relation, equation (22).

Now it is possible to give a simple argument to derive a relation that shows thatγ̄ is
much larger thanγ , and confirms equation (3). Similar to reasonings presented by Schwartz
(1985, 1991) and Schwartzet al (1991), we simply consider now one particular realization
of the random field in a volumeLd . In one realization, there will typically be an excess of
fields favouring one state of orderHRF L−d/2, and hence a magnetization will result

〈|m|〉T = HRF χL−d/2 (33)
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whereχ is the standard (connected) susceptibility. Assuming now atTc that 〈|m|〉Tc
∝

L−β/ν , χTc
∝ Lγ/ν (equations (17) and (29)), we now get from equation (33)

−β/ν = γ /ν − d/2 d = 2(β + γ )/ν. (34)

Combining equations (32) and (34) readily yields

γ̄ = 2γ (35)

or

γ /ν + 2β/ν = d − γ /ν = d − (2 − η) (36)

which is nothing but equation (3). Usinḡγ = ν(4 − η̄) = 2γ = 2ν(2 − η) one also finds
η̄ = 2η, of course (Schwartz 1991).

How can we then avoid the contradiction that was pointed out in equations (20)–(22)?
The answer, simply, is that we have to abandon equations (19) and (20), because in the
scaling limit f̃2(L/ξ) = [f̃1(L/ξ)]2, and thereforeP̃ (0, mLβ/ν) is a delta function at
positions|[〈m〉Tc

]av| = cL−β/ν , wherec is a constant. Since in the connected susceptibility
the two leading terms then cancel, we have to include the leading correction to scaling when
we consider the connected susceptibility. Thus

[〈m2〉Tc
]av = c2L−2β/ν + χ̂Lγ/ν−d . (37)

Our analysis thus implies that the order parameter distribution in finite systems at criticality
hasq sharp peaks at positions of magnitudecL−β/ν and half widthL(γ/ν−d)/2. In systems
where hyperscaling holds, peak positions and width scale with the same power ofL, while
in our case the relative width of the peak vanishes in the scaling limit:

relative width∝ L(γ/ν−d)/2+β/ν = L−θ/2 = L−(1−η/2) → 0. (38)

This behaviour also implies that unlike standard critical phenomena the fourth order
cumulant (Binder 1981, 1992) which we define here as follows

gL(T ) = 5

2
− 3

2

[〈(m2)2〉T ]av

[〈m2〉T ]2
av

(39)

does not have atTc an intersection point with a nontrivial universal value, but rather the
cumulant intersection should converge towards the trivial zero temperature fixed point value
g?

L(T → 0) = 1, as has been briefly announced by Eichhorn and Binder (1995).

4. Numerical results

Our first task is to locate the transition temperatureTc, and to characterize the order of the
transition, putting into the analysis as few assumptions as possible. For Potts models, a
popular characteristic to discuss the order of the transition is the cumulantVE of the energy
distribution (Challaet al 1986, Binder 1992)

VE = 1 − [〈H4〉T ]av/3[〈H2〉T ]2
av. (40)

This quantity is analysed in figure 6. It is seen that minima in this quantity do occur, but
the depth of the minima (relative to the trivial limitVE(L → ∞,T 6= Tc) = 2

3) rapidly
decreases. Obviously, these data do not suggest a first-order transition with a latent heat,
since the existence of a latent heat would imply that the depth of the minimum saturates
for L → ∞ at a finite value less than the trivial limit 2/3. In view of figure 6(b), such a
possibility is extremely unlikely.
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Figure 6. (a) Energy cumulantVE plotted against temperature. Various sizes are indicated as
shown in the figure. (b) Log–log plot of the differenceVE,min(L) ≡ 2/3 − VE(Tmin, L) versus
L. Straight lines indicate possible power law fits. (c) Log–log plot of the specific heat maxima
cV,max(L) againstL. Crosses indicate corresponding data of a pure ferromagnetic Potts model
(FMPM) without random fields.
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In principle, from the slope on the log–log plot figure 6(b) one could extract some
estimate for the critical exponentα of the specific heat, assuming a second-order transition.
But the direct analysis of the specific heat maxima shows that there is an obvious problem
of crossover: forL . 10 the data are hardly distinct from those of the pure Potts model
(which has a weak first-order transition, see e.g. Heermann 1979, Vollmayret al 1993 for
a discussion and references). While the pure Potts model bends over towards the exponent
d = 3, which on the log–log plotCv,max(L) againstL is a clear proof of the nonvanishing
latent heat, in the random field case we see that the specific heat maxima bend over to a
rather small slope, but it is even possible that they saturate at a finite maximum forL → ∞
(we tentatively tried to estimate this maximum, obtainingCv,max(L → ∞) ≈ 12.8, but the
error of this estimate is rather uncertain). Since the critical behaviour of the specific heat is
notoriously difficult to estimate from Monte Carlo work (Binder and Heermann 1992), we
do not attempt to extract any critical exponent estimates from figure 6.

Both for second-order transitions (Binder 1981,1992) and for first-order transitions
(Vollmayr et al 1993) in pure systems a study of the fourth-order cumulant (equation (39))
and its intersections for different linear dimensionsL is a good method to estimateTc.
Figure 7 demonstrates, however, that for the RFPM this intersection property does not hold.

Figure 7. CumulantgL(T ) (equation (39)) plotted against temperature for various sizesL. Part
(a) shows an overall view, part (b) presents a detailed view of the region nearTc.

The larger the lattice sizes used, the more the intersection points move upwards towards
the trivial values,gL→∞(Tc) = 1. Of course, in the light of the discussion presented in
the previous section this behaviour is expected. Again, the conclusion is that the data are
in a crossover regime, and the asymptotic region is presumably only reached for much
larger choices ofL than were available. Note also the minimagL,min(T = Tmin), which are
reminiscent of the behaviour of the pure Potts model (Vollmayret al 1993). In the latter
case, these minima diverge togL,min(T = Tmin) → −∞ asL → −∞, since the transition
is of first-order in the pure case, while in the present case the depth of the minima does not
increase for largeL.

Since for the present problem the cumulant intersection technique fails, we have followed
Ferrenberg and Landau (1991) in applying a different recipe to locateTc, namely we
extrapolate various characteristic temperaturesTc(L) as a function of 1/L1/ν , trying a linear
extrapolation with as many quantities simultaneously, in order to obtain reliable estimates
for bothTc and 1/ν. Such characteristic temperatures that we have used are the position of
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Figure 8. Extrapolation ofTc(L) againstL−1/ν , using various characteristic temperaturesTc(L):
minima of order parameter cumulant (squares) and energy cumulant (circles), maxima of specific
heat (diamonds) and susceptibility (triangles pointing to the left). Also zeros of the order
parameter cumulant (triangles pointing down) and temperatures where the energy distribution
has two peaks of equal height (figure 9(a)) are used. Result of simultaneous straight lines fit is
Tc = 1.6900± 0.002 and 1/ν = 1.535± 0.009.

the minima of the energy cumulant(VE,min) and the order parameter cumulant(gSQR,min),
as well as the position wheregL(T ) = 0, as well as maxima of specific heat(Cv,max) and
susceptibilityχ ′(χmax), see figure 8. Also the temperatureTequal heights was used where both
peaks of the energy distribution have equal heights (figure 9(a)). Note that this distribution
does not develop a deep minimum between the peaks, and although we do have a mild
double-peak structure inP(E) we do not have a peak for the disordered phase in the order
parameter distribution (figure 9(b)) at criticality. This method seems to yield a rather good
estimate ofTc, namelyTc ≈ 1.690; however, the error bars resulting forTc and 1/ν from
this fit (as quoted in the figure caption of figure 8) cannot be taken seriously, since this
analysis does not account for the systematic problem that at least part of the data (if not
all of them!) are not yet in the regime of large enoughL where finite size scaling without
corrections holds. In fact, if we fit the individual data in figure 8 separately, we still get
a good estimate forTc, Tc ≈ 1.6909± 0.0006, but wildly fluctuating estimates for 1/ν

(Eichhorn 1995).
Using this estimate ofTc, we could now check the finite size scaling of the various

moments [〈|m|k〉Tc
]av. In order to eliminate errors from inaccuracy ofTc we rather use the

data at the temperatures of the susceptibility maxima,Tc(L). Assuming a leading behaviour
[〈|m|k〉Tc(L)]av ∝ L−kβ/ν and disregarding the effect of corrections such as postulated in
equation (37), the data forL > 12 are compatible with an exponentβ/ν = 0.34 ± 0.01.
In this context it is interesting to remember that Rieger and Young (1995) foundβ/ν ≈ 0
for the RFIM, raising the possibility of a first-order transition without latent heat. Our
data for the RFPM do not support such an interpretation. However, again note the
caveat that it is possible that the asymptotic regime has not yet been reached in the
range 126 L 6 28. Furthermore, it must be noted that a log–log plot of [〈|m|k〉Tc

]av

is compatible with a significantly smaller estimate, namelyβ/ν ≈ 0.18 ± 0.01. Similar
ambiguities concern our estimates for the exponents characterizing the size dependence of
connected and disconnected susceptibilities (figure 10(b)).
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Figure 9. (a) Energy distributionP(E) shown as function of energyE per spin end linear
dimensionL, at temperaturesTequal heights where both peaks are equal, and normalized such
that these peaks have height unity. (b) Distribution of the order parameterP(m) for L = 28
at T = 1.6948 (the position of the susceptibility maximum). (c) Same as (b) but all three
states projected on a single state (1/0), in order to symmetrize the distribution and smooth out
fluctuations.
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Figure 10. (a) Log–log plot of the first four moments of the root mean square magnetization
mSQR = |m| versus linear dimension atTc(L) defined by the susceptibility maximum. Note that
slight curvature occurs on this plot, as exemplified by fitting straight lines with different slopes
for the data withL 6 10 andL 6 12, respectively. (b) Log–log plot of the maximum value
χ? of χ(Tc(L)), circles, and of the disconnected susceptibilityχ?

dis at the same temperature
{χ?

dis = χdis (Tc(L))} versus the linear dimensionL. Note that forL 6 10 effective exponents
γ /ν ≈ 2.53 (connected) and̄γ /ν ≈ 2.25 could be extracted, which presumably are not
meaningful. ForL > 12 the straight lines shown have the slopesγ /ν = 1.42 andγ̄ /ν = 2.49,
respectively, but the real accuracy of these estimates is still rather uncertain due to crossover
problems.

Figure 11. Distribution P(χdis ) of the disconnected susceptibility (a) and distributionP(χ)

of the connected susceptibility (b) for L = 28 at the temperatureTc(L) = 1.6948 of the
susceptibility maximum. These distributions were generated from a sample of 248 random
fields. Note the different abscissa scales in parts (a) and (b).

Taking these estimates in the above scaling relations, equations (2), (3) and (32) we
obtain γ̄ /ν + 2β/ν = 2.49+ 0.68 = 3.17 or 2.49+ 0.36 = 2.85, which should bed = 3.
Also the relationγ̄ /ν = 2γ /ν = 2.84 is at best very roughly fulfilled. We suspect
that the real accuracy of our exponent estimates is at best 10–20 %, and more accurate
data and larger system sizes clearly would be very desirable. The necessary computing
resources for such a task are still orders of magnitude larger than what was available to
us, however. Nevertheless we feel that our numerical data provide at least qualitative



Investigation of the 3D random-field three-state Potts model 5225

evidence for the scaling description presented in the previous section. Further evidence for
the unusual character of this transition comes from a study of the distribution function of the
susceptibilities (figure 11). WhileP(χdis) is very broad and does not indicate any tendency
of χdis for ‘self-averaging’ despite the sharpness ofP(m), figure 9(b), P(χ) has its peak
at rather small values but there is a clearly developed tail to much larger values. Similar
findings were also reported for the RFIM (Rieger and Young 1993). But again a much larger
sample of random field configurations would be necessary to clarify the analytic nature of
these distributions.

5. Conclusions

In this paper we have presented data for the three-dimensional Potts ferromagnet with
q = 3 states exposed to random fields of intermediate strength (i.e.,HRF = J was
chosen). Consistent with our phase diagram scenario, figure 2(b), we find that for small
linear dimensions the random field has only small effects, and the behaviour is very
similar to the pure Potts ferromagnet without random fields (figure 2(b) implies that for
weak enough random fields the transition stays first-order, and only for fields exceeding a
threshold value—corresponding to the lower line of tricritical points in figure 2(b)—does
one have second-order transitions). All our data are compatible with a standard second-
order transition from the disordered phase to the ferromagnetic phase. This finding thus
disagrees with the result of Goldschmidt and Xu (1985, 1986), that the transition should
be first-order throughout, and also does not provide any evidence for the idea (e.g. de
Almeida and Bruinsma 1987, Ḿezard and Monasson 1994, de Dominiciset al 1995) that
there should intervene a glass-like phase between the disordered and ferromagnetic phases.
However, the results are compatible with the ideas of Schwartz (1985, 1991), Schwartz and
Soffer (1985,1986), Schwartzet al (1981) and Gofmanet al (1993) that there should be
critical behaviour with a two-exponent scaling, corresponding to the ‘modified dimensional
reduction’ (equations (2) and (3)). Although we cannot extract accurate exponent estimates
yet, the trend of our numerical observations is plausible and goes in the right direction
expected from this scenario. An important part of our paper is that we have worked out the
consequences of this scenario for finite size scaling in detail (section 3). Our numerical data
support this description at least qualitatively. There is a clear need to study both much larger
system sizes and larger samples of the random field configuration, but this requires either
significantly more efficient simulation algorithms or significantly faster computers. Recalling
that the model may have applications to experiments on orientational glasses, a search for
suitable experimental realizations of this ‘universality class’ may be also rewarding.
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(HLRZ) and to the Regionales Hochschulrechenzentrum Kaiserslautern (RHRK) for gen-
erous grants of computing time. KB thanks A Aharony, M Schwartz and J Adler for
stimulating discussions.

References

Aharony A 1978Phys. Rev.B 18 3316, 3328
Aharony A, Imry Y and Ma S K 1976Phys. Rev. Lett.37 944



5226 K Eichhorn and K Binder

Aizenman M and Weber J 1989Phys. Rev. Lett.62 2503
de Almeida J R L andBruinsma R 1987Phys. Rev.B 35 7267
Barber M N 1983 Phase Transitions and Critical Phenomenavol 8, ed C Domb and J L Lebowitz (London:

Academic) p 145
Belanger D P and Young A P 1991J. Magn. Magn. Mater.100 272
Bhanot G, Duke D and Salvador R 1986J. Stat. Phys.44 985
Bhatt R N and Young A P 1988Phys. Rev.B 37 5606
Binder K 1981Z. Phys.B 43 119
——1985Z. Phys.B 61 13
——1992Computational methods in field theoryed H Gausterer and C B Lang (Berlin: Springer) p 57
Binder K and Heermann D W 1992Monte Carlo Methods in Statistical Physics: An Introduction2nd edn (Berlin:

Springer)
Binder K, Nauenberg M, Privman V and Young A P 1985Phys. Rev.B 31 1498
Binder K and Reger J D 1992Adv. Phys.41 547
Binder K and Young A P 1986Rev. Mod. Phys.58 801
Blankschtein D, Shapir Y and Aharony A 1984Phys. Rev.B 29 1263
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